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Outline

�Modeling objectives in time series

�General features of ecological/environmental time series

�Components of a time series

�Frequency domain analysis-the spectrum

�Estimating and removing seasonal components

�Other cyclical components

�Putting it all together

Introduction to Statistical Analysis of Time Series
Richard A. Davis

Department of Statistics
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Time Series: A collection of observations xt, each one being 
recorded at time t.  (Time could be discrete, t = 1,2,3,…, or 
continuous t > 0.)

Objective of Time Series Analaysis
�Data compression

-provide compact description of the data.
�Explanatory

-seasonal factors
-relationships with other variables (temperature, 
humidity, pollution, etc)

�Signal processing
-extracting a signal in the presence of noise

�Prediction
-use the model to predict future values of the time series
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General features of ecological/environmental time series
Examples.

1.  Mauna Loa  (CO2,, Oct `58-Sept `90)
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Features

� increasing trend (linear, quadratic?)

� seasonal (monthly) effect.
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Go to ITSM Demo

2.  Ave-max monthly temp (vegetation=tundra,, 1895-1993)

Features

� seasonal (monthly effect)

� more variability in Jan than in July
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July:  mean = 21.95,  var = .6305

Jan :  mean = -.486,  var =2.637
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Sept :  mean = 17.25,  var =1.466
Line:  16.83 + .00845 t
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Components of a time series

Classical decomposition
Xt = mt + st + Yt

• mt = trend component (slowly changing in time)

• st = seasonal component (known period d=24(hourly), 
d=12(monthly))

• Yt = random noise component (might contain irregular
cyclical components of unknown frequency + other stuff).

Go to ITSM Demo
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Estimation of the components.

Xt = mt + st + Yt

12/)5.5(.ˆ 6556 ++−− ++++= ttttt xxxxm �
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� polynomial fitting

Trend mt

� filtering. E.g., for monthly data use
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Estimation of the components (cont).

Xt = mt + st + Yt

years ofnumber    ,/)(ˆ 2412 =++= ++ NNxxxs tttt �
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Irregular component Yt

tttt smXY ˆˆˆ −−=

Seasonal st

� Use seasonal (monthly) averages after detrending.  
(standardize so that st sums to 0 across the year.

� harmonic components fit to the time series using least squares.
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Toy example. (n=6)
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X=(4.24,  3.26, -3.14, -3.24, 0.739,  3.04)’X=(4.24,  3.26, -3.14, -3.24, 0.739,  3.04)’ = 2c0+5(c1+s1)-1.5(c2+s2)+.5c3

The spectrum and frequency domain analysis
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Fact: Any vector of 6 numbers, x = (x1, . . . , x6)’ can be written 
as a linear combination of the vectors c0, c1, c2, s1, s2, c3.

More generally,  any time series x = (x1, . . . , xn)’ of length n 
(assume n is odd) can be written as a linear combination of the 
basis (orthonormal) vectors c0, c1, c2, …, c[n/2], s1, s2, …, s[n/2]. 
That is,
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Properties:

1. The set of coefficients {a0, a1, b1, … } is called the 
discrete Fourier transform
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2.   Sum of squares.

3.   ANOVA (analysis of variance table)

Source           DF               Sum of Squares Periodgram

 ω0 1 a0
2 I(ω0)

 ω1=2π/n 2 a1
2  + b1

2 2 I(ω1)

 ωm =2πm/n 2 am
2  + bm

2 2 I(ωm)

 n
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Source                   DF               Sum of Squares

 ω0=0  (period 0) 1 a0
2 =   4.0

 ω1=2π/6 (period 6)     2 a1
2  + b1

2 = 50.0

 ω2 =2π2/6 (period 3)   2 a2
2  + b2

2 =   4.5 

 ω3 =2π3/6 (period 2)   1 a3
2  =   0.25

 6                           = 58.75

Applied to toy example

∑
t

tx2

Test that period 6 is significant

 H0:  Xt = µ + εt ,      {εt} ~ independent noise

 H1:  Xt = µ + A cos (t2π/6) + B sin (t2π/6) + εt

Test Statistic: (n-3)I(ω1)/(Σt xt
2-I(0)-2I(ω1)) ~ F(2,n-3)

(6-3)(50/2)/(58.75-4-50)=15.79  ⇒ p-value = .003
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Ex.  Sinusoid with period 12.

.120,,2,1   ),
12
2sin(3)

12
2cos(5 …=π+π= tttxt

ITSM DEMO

The spectrum and frequency domain analysis

Ex.  Sinusoid with periods 4 and 12.

Ex.  Mauna Loa
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Sometimes, a seasonal component with period 12 in the time 
series can be removed by differencing at lag 12.  That is the 
differenced series is 

.120,,2,1   ,)
12
2sin(3)

12
2cos(5 …=ε+π+π= tttx tt

Differencing at lag 12

12−−= ttt xxy

Now suppose xt is the sinusoid with period 12 + noise.

Then

which has correlation at lag 12.

1212 −− ε−ε=−= ttttt xxy
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Ex.  Sunspots.  

� period ~ 2π/.62684=10.02 years

� Fisher’s test ⇒ significance

What model should we use?

ITSM DEMO

Other cyclical components; searching for hidden cycles
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Noise.
The time series {Xt} is white or independent noise if the 
sequence of random variables is independent and identically 
distributed.
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Battery of tests for checking whiteness.
In ITSM, choose statistics => residual analysis => Tests of Randomness
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Residuals from Mauna Loa data.
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lag
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Autocorrelation function (ACF):

Mauna Loa residuals
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white noise

Conf Bds:  ± 1.96/sqrt(n)
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Putting it all together

Example:  Mauna Loa
C

O
2

1960 1970 1980 1990

32
0

34
0

tre
nd

1960 1970 1980 1990

32
0

34
0

se
as

on
al

1960 1970 1980 1990

-3
-1

1
2

3

irr
eg

ul
ar

 p
ar

t

1960 1970 1980 1990

-1
.0

0.
0

1.
0



21

Strategies for modeling the irregular part {Yt}.
� Fit an autoregressive process
� Fit a moving average process
� Fit an ARMA (autoregressive-moving average) process

In ITSM, choose the best fitting AR or ARMA using the 
menu option 

Model => Estimation => Preliminary => AR estimation
or

Model => Estimation => Autofit
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How well does the model fit the data?
1. Inspection of residuals.

Are they compatible with white (independent) noise?
� no discernible trend
� no seasonal component
� variability does not change in time.
� no correlation in residuals or squares of residuals

Are they normally distributed?

2. How well does the model predict.
� values within the series (in-sample forecasting)
� future values

3. How well do the simulated values from the model capture 
the characteristics in the observed data?

ITSM DEMO with Mauna Loa
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Model refinement and Simulation
� Residual analysis can often lead to model refinement
� Do simulated realizations reflect the key features 

present in the original data

Two examples
� Sunspots
� NEE (Net ecosystem exchange).

Limitations of existing models
� Seasonal components are fixed from year to year.
� Stationary through the seasons
� Add intervention components (forest fires, volcanic 

eruptions, etc.)
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Other directions
� Structural model formulation for trend and seasonal 

components
� Local level model

mt = mt-1 + noiset

� Seasonal component with noise

st = – st-1 – st-2 – . . . – st-11+ noiset

� Xt= mt + st + Yt + εt

� Easy to add intervention terms in the above 
formulation.

� Periodic models (allows more flexibility in modeling 
transitions from one season to the next).


