

Introduction to Statistical Analysis of Time Series Richard A. Davis Department of Statistics

Outline

- Modeling objectives in time series
- General features of ecological/environmental time series
- Components of a time series
- Frequency domain analysis-the spectrum
- Estimating and removing seasonal components
- Other cyclical components
- Putting it all together

Time Series: A collection of observations x_t , each one being recorded at time t. (Time could be discrete, t = 1,2,3,..., or continuous t > 0.)

Objective of Time Series Analaysis

- Data compression
 - -provide compact description of the data.
- Explanatory
 - -seasonal factors
 - -relationships with other variables (temperature, humidity, pollution, etc)
- Signal processing
 - -extracting a signal in the presence of noise
- Prediction
 - -use the model to predict future values of the time series

General features of ecological/environmental time series Examples.

1. Mauna Loa (CO_{2,}, Oct `58-Sept `90)

Features

- increasing trend (linear, quadratic?)
- seasonal (monthly) effect.

2. Ave-max monthly temp (vegetation=tundra, 1895-1993)

Features

- seasonal (monthly effect)
- more variability in Jan than in July

July: mean = 21.95, var = .6305

Jan: mean = -.486, var = 2.637

Sept: mean = 17.25, var = 1.466

Line: 16.83 + .00845 t

Components of a time series

Classical decomposition

$$X_{\mathsf{t}} = m_{\mathsf{t}} + s_{\mathsf{t}} + Y_{\mathsf{t}}$$

- $m_{\rm t}$ = trend component (slowly changing in time)
- s_t = seasonal component (known period d=24(hourly), d=12(monthly))
- Y_t = random noise component (might contain irregular cyclical components of unknown frequency + other stuff).

Go to ITSM Demo

Estimation of the components.

$$X_{t} = m_{t} + s_{t} + Y_{t}$$

Trend $m_{\rm t}$

• filtering. E.g., for monthly data use

$$\hat{m}_{t} = (.5x_{t-6} + x_{t-5} + \dots + x_{t+5} + .5x_{t+6})/12$$

polynomial fitting

$$\hat{m}_t = a_0 + a_1 t + \dots + a_k t^k$$

Estimation of the components (cont).

$$X_{t} = m_{t} + s_{t} + Y_{t}$$

Seasonal s_t

• Use seasonal (monthly) averages after detrending. (standardize so that \underline{s}_t sums to 0 across the year.

$$\hat{s}_t = (x_t + x_{t+12} + x_{t+24} \cdots) / N$$
, $N = \text{number of years}$

harmonic components fit to the time series using least squares.

$$\hat{s}_t = A\cos(\frac{2\pi}{12}t) + B\sin(\frac{2\pi}{12}t)$$

Irregular component Y_{t}

$$|\hat{Y}_t = X_t - \hat{m}_t - \hat{s}_t|$$

The spectrum and frequency domain analysis

Toy example. (n=6)

$$\mathbf{c}_0 = (\cos(\frac{2\pi 0}{6}), \dots, \cos(\frac{2\pi 0}{6}6))'/\text{sqrt}(6)$$

$$\mathbf{c}_1 = (\cos(\frac{2\pi}{6}), \dots, \cos(\frac{2\pi}{6}6))'/\text{sqrt}(3)$$

$$\mathbf{s}_1 = (\sin(\frac{2\pi}{6}), \dots, \sin(\frac{2\pi}{6}6))'/\text{sqrt}(3)$$

$$\mathbf{c}_2 = (\cos(\frac{2\pi 2}{6}), \dots, \cos(\frac{2\pi 2}{6}6))'/\text{sqrt}(3)$$

$$\mathbf{s}_2 = (\sin(\frac{2\pi 2}{6}), \dots, \sin(\frac{2\pi 2}{6}6))'/\text{sqrt}(3)$$

$$\mathbf{c}_3 = (\cos(\frac{2\pi}{2}), \dots, \cos(\frac{2\pi}{2}6))'/\text{sqrt}(6)$$

$$X = (4.24, 3.26, -3.14, -3.24, 0.739, 3.04)' = 2c_0 + 5(c_1 + s_1) - 1.5(c_2 + s_2) + .5c_3$$

Fact: Any vector of 6 numbers, $\mathbf{x} = (x_1, \dots, x_6)$ ' can be written as a linear combination of the vectors \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{s}_1 , \mathbf{s}_2 , \mathbf{c}_3 .

More generally, any time series $\mathbf{x} = (x_1, \dots, x_n)$ ' of length n (assume n is odd) can be written as a linear combination of the basis (orthonormal) vectors \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , ..., $\mathbf{c}_{[n/2]}$, \mathbf{s}_1 , \mathbf{s}_2 , ..., $\mathbf{s}_{[n/2]}$. That is,

$$\mathbf{x} = a_0 \mathbf{c}_0 + a_1 \mathbf{c}_1 + b_1 \mathbf{s}_1 + \dots + a_m \mathbf{c}_m + b_m \mathbf{s}_m, \ m = [n/2]$$

$$\mathbf{c}_{0} = \left(\frac{1}{n}\right)^{1/2} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \ \mathbf{c}_{j} = \left(\frac{2}{n}\right)^{1/2} \begin{bmatrix} \cos(\omega_{j}) \\ \cos(2\omega_{j}) \\ \vdots \\ \cos(n\omega_{j}) \end{bmatrix}, \ \mathbf{s}_{j} = \left(\frac{2}{n}\right)^{1/2} \begin{bmatrix} \sin(\omega_{j}) \\ \sin(2\omega_{j}) \\ \vdots \\ \sin(n\omega_{j}) \end{bmatrix}$$

$$\mathbf{x} = a_0 \mathbf{c}_0 + a_1 \mathbf{c}_1 + b_1 \mathbf{s}_1 + \dots + a_m \mathbf{c}_m + b_m \mathbf{s}_m, \ m = [n/2]$$

Properties:

1. The set of coefficients $\{a_0, a_1, b_1, ...\}$ is called the discrete Fourier transform

$$a_{0} = (\mathbf{x}, \mathbf{c}_{0}) = \frac{1}{n^{1/2}} \sum_{t=1}^{n} x_{t}$$

$$a_{j} = (\mathbf{x}, \mathbf{c}_{j}) = \frac{2^{1/2}}{n^{1/2}} \sum_{t=1}^{n} x_{t} \cos(\omega_{j} t)$$

$$b_{j} = (\mathbf{x}, \mathbf{s}_{j}) = \frac{2^{1/2}}{n^{1/2}} \sum_{t=1}^{n} x_{t} \sin(\omega_{j} t)$$

2. Sum of squares.

$$\sum_{t=1}^{n} x_{t}^{2} = a_{0}^{2} + \sum_{j=1}^{m} (a_{j}^{2} + b_{j}^{2})$$

3. ANOVA (analysis of variance table)

Source	DF	Sum of Squares	Periodgram
ω_0	1	$a_0^{\ 2}$	$I(\omega_0)$
$\omega_1 = 2\pi/n$	2	$a_1^2 + b_1^2$	$2 I(\omega_1)$
•	•	• •	• • •
$\omega_{\rm m} = 2\pi {\rm m/n}$	2	$a_{\rm m}^{-2} + b_{\rm m}^{-2}$	$2 I(\omega_{\rm m})$
	n	$\sum_{t} x_{t}^{2}$	

Source	DF	Sum of Squares
$\omega_0 = 0 \text{ (period 0)}$	1	$a_0^2 = 4.0$
$\omega_1 = 2\pi/6 \text{ (period 6)}$	2	$a_1^2 + b_1^2 = 50.0$
$\omega_2 = 2\pi 2/6 \text{ (period 3)}$	2	$a_2^2 + b_2^2 = 4.5$
$\omega_3 = 2\pi 3/6 \text{ (period 2)}$	1	$a_3^2 = 0.25$
	6	$\sum_{t} x_t^2 = 58.75$

Test that period 6 is significant

 H_0 : $X_t = \mu + \varepsilon_t$, $\{\varepsilon_t\}$ ~ independent noise

H₁: $X_t = \mu + A \cos(t2\pi/6) + B \sin(t2\pi/6) + \varepsilon_t$

Test Statistic: $(n-3)I(\omega_1)/(\Sigma_t x_t^2-I(0)-2I(\omega_1)) \sim F(2,n-3)$

 $(6-3)(50/2)/(58.75-4-50)=15.79 \implies p-value = .003$

The spectrum and frequency domain analysis

Ex. Sinusoid with period 12.

$$x_t = 5\cos(\frac{2\pi}{12}t) + 3\sin(\frac{2\pi}{12}t), \quad t = 1, 2, \dots, 120.$$

Ex. Sinusoid with periods 4 and 12.

Ex. Mauna Loa

ITSM DEMO

Differencing at lag 12

Sometimes, a seasonal component with period 12 in the time series can be removed by differencing at lag 12. That is the differenced series is

$$y_t = x_t - x_{t-12}$$

Now suppose x_t is the sinusoid with period 12 + noise.

$$x_t = 5\cos(\frac{2\pi}{12}t) + 3\sin(\frac{2\pi}{12}t) + \varepsilon_t, \quad t = 1, 2, ..., 120.$$

Then

$$y_t = x_t - x_{t-12} = \varepsilon_t - \varepsilon_{t-12}$$

which has correlation at lag 12.

Other cyclical components; searching for hidden cycles

Ex. Sunspots.

- period ~ $2\pi/.62684=10.02$ years
- Fisher's test ⇒ significance

What model should we use?

ITSM DEMO

Noise.

The time series $\{X_t\}$ is **white** or **independent noise** if the sequence of random variables is independent and identically distributed.

Battery of tests for checking whiteness.

In ITSM, choose statistics => residual analysis => Tests of Randomness

Residuals from Mauna Loa data.

t	$r_{\rm t}$	r_{t+25}
1	19	.13
2	14	.04
3	25	.20
4	13	.47
	• • •	

Autocorrelation function (ACF):

Mauna Loa residuals

Conf Bds: ± 1.96/sqrt(n)

white noise

Example: Mauna Loa

Strategies for modeling the irregular part $\{Y_t\}$.

- Fit an autoregressive process
- Fit a moving average process
- Fit an ARMA (autoregressive-moving average) process

In ITSM, choose the best fitting AR or ARMA using the menu option

Model => Estimation => Preliminary => AR estimation

or

Model => Estimation => Autofit

How well does the model fit the data?

1. Inspection of residuals.

Are they compatible with white (independent) noise?

- no discernible trend
- no seasonal component
- variability does not change in time.
- ➤ no correlation in residuals or **squares** of residuals Are they normally distributed?
- 2. How well does the model predict.
 - values within the series (in-sample forecasting)
 - future values
- 3. How well do the simulated values from the model capture the characteristics in the observed data?

Model refinement and Simulation

- Residual analysis can often lead to model refinement
- Do simulated realizations reflect the key features present in the original data

Two examples

- Sunspots
- NEE (Net ecosystem exchange).

Limitations of existing models

- Seasonal components are fixed from year to year.
- Stationary through the seasons
- Add intervention components (forest fires, volcanic eruptions, etc.)

Other directions

- Structural model formulation for trend and seasonal components
 - Local level model

$$m_t = m_{t-1} + noise_t$$

Seasonal component with noise

$$s_t = -s_{t-1} - s_{t-2} - \dots - s_{t-11} + noise_t$$

- $> X_t = m_t + s_t + Y_t + \varepsilon_t$
- Easy to add intervention terms in the above formulation.
- Periodic models (allows more flexibility in modeling transitions from one season to the next).

